Tools, data resource and methods

Adam H. Sparks

Curtin Biometry and Agricultural Data Analytics, Centre for Crop and Disease Management, Curtin University

Why Even Try?

“…all models are wrong…”

George E. P. Box

Why Even Try?

“…all models are wrong,
but some are useful.”

George E. P. Box

Disclaimer

A hand with a red 'x', a disclamer

About Open Science and Reproducibility

From Sparks et al. (2023b)

About Open Science and Reproducibility

From Sparks et al. (2023b)

About Open Science and Reproducibility

From Sparks et al. (2023b)

Common Objectives

  • Disease epidemics

  • Yield losses

  • Sometimes both

Challenges

Issues of Scale

  • Epidemiological processes

  • Crop models

Issues with Getting Data

Computational Tools

The Main Scientific Programming Languages

Julia Programming Language Logo Python Programming Language Logo R Programming Language Logo

Primary Package Registries

Julia Registry Logo Python Programming Language Logo R Programming Language Logo

Acquiring Climate Data

Using a programmatic/scriptable method

Acquiring Climate Data with Julia

Julia Programming Language Logo

Acquiring Climate Data with Python

  • pynasapower Download meteorological data from NASA POWER using a simple Python API client1 [annual, monthly and daily] (Falagas 2023)

  • cdsapi Python API to access the Copernicus Climate Data Store (CDS)2 [monthly and daily] (ECMWF 2023)

  • latlon_utils Retrieve WorldClim climate and other information for lat-lon grid cells [monthly] (Sommer 2022)

Python Programming Language Logo

Acquiring Climate Data with R

  • {ecmwfr} Interface to the public ECMWF API Web Services (Hufkens et al. 2019), includes:

    • Copernicus Climate Data Store (CDS) [monthly and daily]1

R Programming Language Logo

Acquiring Climate Data with R

R Programming Language Logo

Acquiring Climate Data with R

  • {nasapower} API Client for NASA POWER Global Meteorology, Surface Solar Energy and Climatology in R [annual, monthly and daily] (Sparks 2018)

  • {climenv} Download, extract and visualise climatic and elevation data (e.g., CHELSA) [monthly and daily] (Tsakalos et al. 2023)

R Programming Language Logo

On Plant Disease Models and Modelling

Model Frameworks, Scripts and Packages or Libraries

An icon for a manuscript or paper

Code repository branch

A locked icon

Plant Disease Models and Frameworks

Plant Disease Models and Frameworks in Julia

Provides models for unmanaged epidemics of:

  • bacterial blight,
  • brown spot,
  • leaf blast,
  • sheath blight, and
  • rice tungro disease.

Julia Programming Language Logo

Plant Disease Models and Frameworks in Python

Provides models for rice yield losses due to:

  • leaf blast, and
  • bacterial blight

Python Programming Language Logo

Plant Disease Models and Frameworks in R

Scripts for Potato Late Blight

R Programming Language Logo

Plant Disease Models and Frameworks in R

Scripts for Rice Diseases

Provides models for:

  • leaf blast, and
  • sheath blight

in Korean rice paddies with localised cultivars.

Plant Disease Models and Frameworks in R

Packages for Potato Late Blight

R Programming Language Logo

Plant Disease Models and Frameworks in R

Packages for Rice Diseases

Both provide models for unmanaged epidemics of:

  • bacterial blight,
  • brown spot,
  • leaf blast,
  • sheath blight, and
  • rice tungro disease.

R Programming Language Logo

Summary

  • Overall lack of support for this sort of work

    • Few off-the shelf data sets on a daily-time step that can be (programmatically) downloaded
  • All three programming languages offer some level of support

  • All three have advantages and disadvantages, but you can mix-n-match languages

  • The ways of working in this area still are not optimal

Resources

Working Environments with Examples of the Tools in this Presentation

Julia

Python

R

Resources

Support for Climate Projects, Tools and Data

Useful Climate Change Data Sets

R for Plant Disease Epidemiology

  • https://r4pde.net/, a good primer, this covers temporal analysis, spatial analysis, epidemics and yield and disease prediction.

Weather Data Generators

CGIAR MarkSim Web for IPCC AR5 data (CMIP5)1

LARS-WG A Stochastic Weather Generator for Use in Climate Impact Studies2

SDSM Statistical Downscaling Model3

pyClim-SDM4

Examples

Modelling Country Level Yield Losses

Python Programming Language Logo

R Programming Language Logo

Modelling Country Level Yield Losses

Python Programming Language Logo

R Programming Language Logo

Modelling Country Level Yield Losses

Python Programming Language Logo

R Programming Language Logo

Global Disease Severity

R Programming Language Logo

References

Andrade-Piedra, J. L., Forbes, G. A., Shtienberg, D., Grünwald, N. J., Chacón, M. G., Taipe, M. V., et al. 2005a. Qualification of a plant disease simulation model: Performance of the LATEBLIGHT model across a broad range of environments. Phytopathology. 95:1412–1422.
Andrade-Piedra, J. L., Hijmans, R. J., Forbes, G. A., Fry, W. E., and Nelson, R. J. 2005b. Simulation of potato late blight in the Andes. I: Modification and parameterization of the LATEBLIGHT model. Phytopathology. 95:1191–1199.
Andrade-Piedra, J. L., Hijmans, R. J., Juárez, H. S., Forbes, G. A., Shtienberg, D., and Fry, W. E. 2005c. Simulation of potato late blight in the Andes. II: Validation of the LATEBLIGHT model. Phytopathology. 95:1200–1208.
Bruhn, J. A., Bruck R., I., Fry W., E., Arneson P., A., and Keokosky, E. V. 1980. User’s manual for LATEBLIGHT: A plant disease management game. Ithaca, NY, USA: Cornell University, Department of Plant Pathology.
Doster, M. A., Milgroom, M. G., Fry, W. E., et al. 1990. Quantification of factors influencing potato late blight suppression and selection for metalaxyl resistance in Phytophthora infestans: A simulation approach. Phytopathology. 80:1190–1198.
Duku, C., Sparks, A. H., and Zwart, S. J. 2015. Spatial modelling of rice yield losses in Tanzania due to bacterial leaf blight and leaf blast in a changing climate. Climatic Change. 135:569–583.
ECMWF. 2023. Cdsapi. ECMWF. Available at: https://github.com/ecmwf/cdsapi/tree/master.
Falagas, A. 2023. Pynasapower. Available at: https://github.com/alekfal/pynasapower.
Fick, S. E., and Hijmans, R. J. 2017. WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology. 37:4302–4315.
Fry, W. E., Apple, A. E., and Bruhn, J. A. 1983. Evaluation of potato late blight forecasts modified to incorporate host resistance and fungicide weathering. Phytopathology. 73:1054–1059.
Grünwald, N. J., Montes, G. R., Saldaña, H. L., Covarrubias, O. A. R., and Fry, W. E. 2002. Potato late blight management in the Toluca Valley: Field validation of SimCast modified for cultivars with high field resistance. Plant Disease. 86:1163–1168.
Hijmans, R. J. 2017. Rlateblight: Potato late blight models.
Hijmans, R. J., Barbosa, M., Ghosh, A., and Mandel, A. 2023. geodata: Download geographic data. Available at: https://CRAN.R-project.org/package=geodata.
Hijmans, R. J., Savary, S., Pangga, R., and Aunario, J. 2009. cropsim: Simulation modeling of crops and their diseases.
Hufkens, K., Stauffer, R., and Campitelli, E. 2019. The ecwmfr package: An interface to ECMWF API endpoints. Available at: https://bluegreen-labs.github.io/ecmwfr/.
Hyre, R. A. 1954. Progress in forecasting late blight of potato and tomato.
Juroszek, P., and von Tiedemann, A. 2015. Linking plant disease models to climate change scenarios to project future risks of crop diseases: A review. Journal of Plant Diseases and Protection. 122:3–15.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., et al. 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific Data. 4.
Karger, D. N., Schmatz, D. R., Dettling, G., and Zimmermann, N. E. 2020. High-resolution monthly precipitation and temperature time series from 2006 to 2100. Scientific Data. 7.
Kim, K.-H. 2015. Modified EPIRICE ref.
Kim, K.-H., Cho, J., Lee, Y. H., and Lee, W.-S. 2015. Predicting potential epidemics of rice leaf blast and sheath blight in South Korea under the RCP 4.5 and RCP 8.5 climate change scenarios using a rice disease epidemiology model, EPIRICE. Agricultural and Forest Meteorology. 203:191–207.
MacKenzie, D. R. 1981. Scheduling fungicide applications for potato late blight with Blitecast.
Mendiburu, F. de. 2023. agricolae: Statistical procedures for agricultural research. Available at: https://CRAN.R-project.org/package=agricolae.
Narouei-Khandan, H. A., Shakya, S. K., Garrett, K. A., Goss, E. M., Dufault, N. S., Andrade-Piedra, J. L., et al. 2020. BLIGHTSIM: A new potato late blight model simulating the response of Phytophthora infestans to diurnal temperature and humidity fluctuations in relation to climate change. Pathogens. 9:659.
Savary, S., Esker, P., McRoberts, N., Willocquet, L., Caffi, T., Rossi, V., et al. 2015. Models for crop diseases: Overview of approaches & scales.
Savary, S., Nelson, A., Willocquet, L., Pangga, I., and Aunario, J. 2012. Modeling and mapping potential epidemics of rice diseases globally. Crop Protection. 34:6–17.
Schouten, R., and Poisot, T. 2023. RasterDataSources.jl. Available at: https://github.com/EcoJulia/RasterDataSources.jl.
Sommer, P. S. 2022. Latlon_utils. Available at: https://github.com/Chilipp/latlon-utils.
Sparks, A. H. 2018. nasapower: A NASA POWER global meteorology, surface solar energy and climatology data client for R. The Journal of Open Source Software. 3:1035.
Sparks, A. H. 2022. Simulation modelling of crop diseases using a Healthy-Latent-Infectious-Postinfectious (HLIP) model in Julia. Available at: https://github.com/adamhsparks/Epicrop.jl.
Sparks, A. H., Forbes, G. A., Hijmans, R. J., and Garrett, K. A. 2011. A metamodeling framework for extending the application domain of process-based ecological models. Ecosphere. 2:art90.
Sparks, A. H., Forbes, G. A., Hijmans, R. J., and Garrett, K. A. 2014. Climate change may have limited effect on global risk of potato late blight. Global Change Biology. 20:3621–3631.
Sparks, A. H., Hijmans, R., Savary, S., Pangga, I., and Aunario, J. 2023a. epicrop: Simulation modelling of crop diseases using a susceptible-exposed-infectious-removed (SEIR) model. Available at: https://codeberg.org/adamhsparks/epicrop.
Sparks, A. H., Ponte, E. M. D., Alves, K. S., Foster, Z. S. L., and Grünwald, N. J. 2023b. Openness and computational reproducibility in plant pathology: Where we stand and a way forward. Phytopathology®. 113:1159–1170.
Tsakalos, J. L., Smith, M. R., Luebert, F., and Mucina, L. 2023. climenv: Download, extract and visualise climatic and elevation data. Journal of Vegetation Science.
Wallin, J. R. 1962. Summary of recent progress in predicting late blight epidemics in United States and Canada. American Potato Journal. 39:306–312.
Yun Chan, M. 2023. CDSAPI.jl. Available at: https://github.com/JuliaClimate/CDSAPI.jl.
Zopf, R., Giabbiconi, C. M., Gruber, T., and Müller, M. M. 2004. Attentional modulation of the human somatosensory evoked potential in a trial-by-trial spatial cueing and sustained spatial attention task measured with high density 128 channels EEG. Cognitive Brain Research. 20:491–509 Available at: https://www.sciencedirect.com/science/article/pii/S0926641004001296 [Accessed March 6, 2024].